If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+64t+60
We move all terms to the left:
0-(-16t^2+64t+60)=0
We add all the numbers together, and all the variables
-(-16t^2+64t+60)=0
We get rid of parentheses
16t^2-64t-60=0
a = 16; b = -64; c = -60;
Δ = b2-4ac
Δ = -642-4·16·(-60)
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{31}}{2*16}=\frac{64-16\sqrt{31}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{31}}{2*16}=\frac{64+16\sqrt{31}}{32} $
| 7x+3(5-3x)=24 | | 4x−2+2x+3+2x+5=38 | | 72c=9c= | | -1.8=2.1h-5.7-4.6h | | 5q-3=102 | | 1/2x-2=x+4 | | y=34+97 | | k/3=27 | | m-6.2=3.2 | | 14=4(w+8)-7w | | 2x^2+2x+25=85 | | 3x+2=-2(-x+4) | | 5(10+3p)=15p+60 | | n+32=-12n | | 8x-3=4.5x+18 | | 3x+0.5(10x−6)=21 | | (n+12)2=6n | | -4x+7=6x-13 | | z=3.3 | | (x+29)+(2x-9)+(x)=180 | | 3−4q=–17 | | -n=36 | | 18=4x-22 | | 7r–5=10 | | (7x-8)=(10x-14) | | -2x+3(4x-5)=-25 | | 3^2x-28×3x-27=0 | | Y=1.6x+3 | | 6.5=0.5x+3 | | 3(k+15)=-2(3k-6) | | 2.7+f−3.9=−6.5 | | 3(3x+3)=3x-27 |